
Lecture 2: Exponential Dispersion Family &
Generalized Linear Models

Deep Learning for Actuarial Modeling
36th International Summer School SAA

University of Lausanne

Ronald Richman, Salvatore Scognamiglio, Mario V. Wüthrich

2025-09-08

1/33



Introduction

1 Introduction

2 Exponential dispersion family

3 Model validation and model selection

4 GLM regression function

5 GLM fitting and examples

2/33



Introduction

Introduction

Overview

This lecture introduces the exponential dispersion family (EDF). The
EDF is the most important family of distributions for regression mod-
eling. Within this family, maximum likelihood estimation (MLE) is
equivalent to deviance loss minimization. Therefore, this probabilistic
framework gives us a foundation to select the objective function for
model fitting.
This theoretical framework is then applied to the class of generalized
linear models (GLMs). GLMs are the core regression models and they
form the technical basis for more advanced regression tools like neural
networks. In particular, in the next lecture, we are going to present
neural networks as an extension of GLMs.

This lecture covers Chapters 1-3 of Wüthrich et al. (2025).

2/33



Introduction

Desirable properties of actuarial regression models

Desirable characteristics of predictive models in insurance:
(a) provide accurate forecasts;
(b) smoothness properties so that forecasts do not drastically change, if one

slightly perturbs the inputs;
(c) sparsity and simplicity; one aims for a parsimonious model;
(d) inner functioning of the model should be intuitive and explainable;
(e) good finite sample properties and credible parameter estimates;
(f) quantifiable prediction uncertainty;
(g) (manually) adaptable to expert knowledge;
(h) compliant with regulation, and one should be able to verify this.

Typically, one needs to compromise among these requirements.
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Exponential dispersion family

Exponential dispersion family

A random variable Y ∼ EDF(θ, φ/v ; κ) belongs to the EDF if it has a
density of the form

Y ∼ fθ(y) = exp
(yθ − κ(θ)

φ/v + c(y , φ/v)
)

,

with

canonical parameter θ ∈ Θ ⊆ R,

cumulant function κ : Θ → R,

dispersion parameter φ > 0,

weight/volume/exposure v > 0;

the meaning of the remaining terms is less relevant for our purposes.
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Exponential dispersion family

Exponential dispersion family: main takeaways

The EDF definition looks a bit complicated, but there are only the following
points that we need to take from this definition.

The cumulant function κ fully determines the specific type of
distribution of Y : it includes, e.g., the Poisson, gamma and Tweedie’s
class.

The canonical parameter θ is the model parameter to be estimated;
the regression structure will enter this canonical parameter.

The mean is given by
E [Y ] = κ′(θ).

The variance is given by

Var (Y ) = φ

v κ′′(θ).
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Exponential dispersion family

Inverse function h := (κ′)−1 is the canonical link of the chosen EDF.

The canonical link h allows one to identify the mean and the canonical
parameter of the selected EDF by

E [Y ] = κ′(θ) ⇐⇒ h (E [Y ]) = θ.

This is one-to-one relationship between the mean and the canonical
parameter, and we can use either of them for model fitting.

The EDF model class is fitted with MLE.

Model fitting

MLE within the EDF is equivalent to deviance loss minimization.
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Exponential dispersion family

Deviance loss function

Select Y ∼ EDF(θ, φ/v ; κ) with cumulant function κ.

The deviance loss function of the selected EDF is given by

L(y , m) = 2 φ

v
(
log
(
fh(y)(y)

)
− log

(
fh(m)(y)

))
≥ 0,

for observation y and mean m.

Deviance losses are strictly consistent for mean estimation: this is a
necessary condition for appropriate model fitting; Gneiting (2011).

If the selected deviance loss meets the properties of the responses Y ,
in particular, if it has the same variance behavior, the estimation
procedure is optimal in the sense of best asymptotic normal;
Gourieroux, Monfort and Trognon (1984).
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Exponential dispersion family

Finite sample estimation

Always select the deviance loss that aligns with the EDF properties of
Y for model fitting (i.e., select the correct κ for Y ).

Some examples:

EDF distribution cumulant κ(θ) deviance loss L(y , m)
Gaussian θ2/2 (y − m)2

gamma − log(−θ) 2 ((y − m)/m + log(m/y))
inverse Gaussian −

√
−2θ (y − m)2/(m2y)

Poisson eθ 2 (m − y − y log(m/y))

Tweedie p ∈ (1, 2) ((1−p)θ)
2−p
1−p

2−p 2
(
y y1−p−m1−p

1−p − y2−p−m2−p

2−p

)
Bernoulli log(1 + eθ) 2 (−y log(m) − (1 − y) log(1 − m))
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Model validation and model selection

Model validation and model selection

Select a deviance loss L(y , m) for model fitting.

Based on a learning sample L = (Yi , X i , vi)n
i=1, one minimizes the

in-sample loss

µ̂L ∈ arg min
µ

n∑
i=1

vi
φ

L (Yi , µ(X i)) ;

a lower index is added to µ̂L to highlight that this step is performed on
the learning sample L.

Model validation and model selection should not be done on the (same)
learning sample L. This would give a too optimistic judgement: a more
complex model always has a smaller loss than a nested simpler model.
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Model validation and model selection

Model validation needs to be done on an independent test sample
(hold-out sample) T = (Yt , X t , vt)m

t=1.

L and T should be independent and contain i.i.d. data following the
same law as (Y , X , v).

The out-of-sample loss (generalization loss) is defined by

ĜL(T , µ̂L) = 1∑m
t=1 vt/φ

m∑
t=1

vt
φ

L (Yt , µ̂L(X t)) .

This out-of-sample loss is the main workhorse for model validation and
model selection in machine learning and AI.
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GLM regression function

GLM regression function

Consider q-dimensional real-valued covariates X = (X1, . . . , Xq)⊤.

Select a smooth and strictly increasing link function g .

A GLM regression function is given by

X 7→ g(µϑ(X)) = ϑ0 +
q∑

j=1
ϑjXj =: ⟨ϑ, X⟩ ,

with GLM parameter ϑ = (ϑ0, . . . , ϑq)⊤ ∈ Rq+1.

This implies conditional mean for response Y , given covariates X ,

µϑ(X) = E [Y | X ] = g−1 ⟨ϑ, X⟩ .

There is a linear structure in X up to the link transformation g−1.
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GLM regression function

Log-link example

The log-link is by far the most popular link for actuarial modeling
(under positive claims Y )

g(·) = log(·).

This implies a multiplicative (price) mean functional

X 7→ µϑ(X) = E [Y | X ] = exp ⟨ϑ, X⟩ = eϑ0
q∏

j=1
eϑj Xj .

The price relativities eϑj Xj are easily interpretable.

The bias parameter ϑ0 ∈ R is used to calibrate the overall level.
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GLM regression function

The graph shows: q = 2 with X1 ∈ [18, 90] being the age and
X2 ∈ {0, 1} = {male, female} the gender of the policyholder.
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This example has regression parameter components ϑ1 > 0 and ϑ2 < 0.
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GLM regression function

EDF and the canonical link

Starting from Y ∼ EDF(θ, φ/v ; κ), there is the special link choice

g(·) = h(·) = (κ′)−1(·).

This link is called the canonical link of the selected EDF.

Under the canonical link choice, there is the identity

θ = h (E [Y | X ]) = ⟨ϑ, X⟩.

That is, under the canonical link choice, the canonical parameter θ
receives the linear structure ⟨ϑ, X⟩; called linear predictor.

Remark: θ denotes the canonical parameter and ϑ the regression
parameter.
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GLM regression function

Canonical links have good mathematical properties, e.g.,
(1) the MLE of a GLM is unique;
(2) the resulting fitted GLM fulfills the balance property.

Generally, the support of θ is not necessarily the entire real line R.
This may lead to domain constraints which are difficult to meet in
numerical applications under the canonical link choice.

Therefore, under positive responses Y , e.g., in the gamma EDF case,
the log-link is preferred over the canonical link.

The log-link is the canonical link (if and only if) of the Poisson model.
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GLM regression function

EDF distribution
canonical link

h(µ) support of θ
mean parameter

space
Gaussian µ R R
gamma −1/µ (−∞, 0) (0, ∞)
inverse Gaussian −1/(2µ2) (−∞, 0] (0, ∞)
Poisson log(µ) R (0, ∞)
Tweedie µ1−p/(1 − p) (−∞, 0) (0, ∞)
Bernoulli log(µ/(1 − µ)) R (0, 1)

In the Gaussian (identity link), the Poisson (log-link) and the Bernoulli
(logit link) cases one typically selects the canonical link.

In the other cases one selects the log-link.
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GLM fitting and examples

GLM fitting and examples

Construct the log-likelihood function of the learning sample
L = (Yi , X i , vi)n

i=1 assuming independent EDF instances

ϑ 7→ ℓ(ϑ) =
n∑

i=1

vi
φ

[Yi h (µϑ(X i)) − κ (h (µϑ(X i)))] + c(Yi , φ/vi).

The MLE is found by solving, subject to existence,

ϑ̂MLE ∈ arg max
ϑ

ℓ(ϑ).

This is solved numerically by Fisher’s scoring method or the IRLS
algorithm; see Nelder and Wedderburn (1972).

This looks complicated, but actually it’s not: consider deviance losses!
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GLM fitting and examples

Relationship to deviance losses

The deviance loss L of any EDF density fθ with cumulant function κ
gives a strictly consistent loss for mean estimation

L(y , m) = 2φ

v
[
log
(
fh(y)(y)

)
− log

(
fh(m)(y)

)]
≥ 0.

Instead of maximizing the log-likelihood of the chosen EDF, one can
equally minimize this deviance loss to get the same result.

This deviance loss minimization looks nicer

ϑ̂MLE ∈ arg min
ϑ

n∑
i=1

vi
φ

L(Yi , µϑ(X i)).

Recall: The correct deviance loss function L (w.r.t. Y ) has the best
finite sample properties; Gourieroux, Monfort and Trognon (1984).
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GLM fitting and examples

Example: Poisson log-link GLM

Assume Yi are Poisson; this is EDF with κ(·) = exp(·).

Select a log-link GLM regression function with parameter ϑ ∈ Rq+1

X 7→ log(µϑ(X)) = ϑ0 +
q∑

j=1
ϑjXj .

The Poisson deviance loss minimization solves

ϑ̂MLE = arg min
ϑ∈Rq+1

n∑
i=1

2vi

(
µϑ(X i) − Yi − Yi log

(
µϑ(X i)

Yi

))
.

vi > 0 are the time exposures, and Yi = Ni/vi are the claims
frequencies for the observed claim counts Ni ∈ N0.

The dispersion in the Poisson model is φ = 1.
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GLM fitting and examples

GLM example: French MTPL data

We revisit the French MTPL claims count data from the previous lecture.

load(file="../Data/freMTPL2freqClean.rda")
dat <- freMTPL2freqClean
str(dat)

The (cleaned) data is illustrated below.

The last line shows whether the instance belongs to the learning
sample ‘L’ or the test sample ‘T’; this is the identical (random)
learning-test set partition as in Wüthrich and Merz (2023) (also the
randomized order is identical which will be important in stochastic
gradient descent fitting of networks).

The variable type ‘Factor’ denotes categorical covariates. In the
subsequent GLM implementation, they will automatically (internally)
be encoded by dummy coding (described in a later lecture).
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GLM fitting and examples

'data.frame': 678007 obs. of 14 variables:
$ IDpol : num 4156370 4006798 6084964 2228865 4141911 ...
$ Exposure : num 0.06 0.29 0.46 0.08 1 0.6 0.08 0.12 1 0.12 ...
$ Area : Factor w/ 6 levels "A","B","C","D",..: 4 5 3 4 1 3 3 4 2 5 ...
$ VehPower : int 6 6 7 4 5 5 4 4 5 5 ...
$ VehAge : int 6 7 10 15 22 2 15 2 4 6 ...
$ DrivAge : int 20 29 27 34 44 25 29 50 29 54 ...
$ BonusMalus: int 100 59 68 50 50 90 85 50 72 103 ...
$ VehBrand : Factor w/ 11 levels "B1","B2","B3",..: 2 9 1 2 3 5 2 9 3 1 ...
$ VehGas : Factor w/ 2 levels "Diesel","Regular": 2 1 1 2 1 2 2 2 1 2 ...
$ Density : int 525 2498 123 1109 34 129 196 629 66 3744 ...
$ Region : Factor w/ 22 levels "R11","R21","R22",..: 18 15 18 5 15 9 18 2 15 21 ...
$ ClaimTotal: num 0 0 0 0 0 0 0 0 0 0 ...
$ ClaimNb : num 0 0 0 0 0 0 0 0 0 0 ...
$ LearnTest : chr "L" "L" "L" "L" ...
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GLM fitting and examples

Pre-process data for GLM (this is the feature-engineering step):

dat$AreaGLM <- as.integer(dat$Area)
dat$VehPowerGLM <- as.factor(pmin(dat$VehPower, 9))
dat$VehAgeGLM <- as.factor(cut(dat$VehAge, c(0,5,12,101),

labels = c("0-5", "6-12", "12+"),
include.lowest = TRUE))

dat$DrivAgeGLM <- as.factor(cut(dat$DrivAge,
c(18,20,25,30,40,50,70,101),↪→

labels = c("18-20", "21-25", "26-30", "31-40",
"41-50", "51-70", "71+"),↪→

include.lowest = TRUE))
dat$DrivAgeGLM <- relevel(dat[,"DrivAgeGLM"], ref="31-40")
dat$BonusMalusGLM <- pmin(dat$BonusMalus, 150)
dat$DensityGLM <- log(dat$Density)
#
learn <- dat[which(dat$LearnTest=='L'),]
test <- dat[which(dat$LearnTest=='T'),]
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GLM fitting and examples

Fit/learn a Poisson log-link GLM (with time exposures):

d.glm <- glm(ClaimNb ~ DrivAgeGLM + VehBrand + VehGas + DensityGLM +
AreaGLM, data=learn, offset=log(Exposure), family=poisson())↪→

summary(d.glm)

...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.258957 0.034102 -95.564 < 2e-16 ***
DrivAgeGLM18-20 1.275057 0.044964 28.358 < 2e-16 ***
DrivAgeGLM21-25 0.641668 0.028659 22.390 < 2e-16 ***
DrivAgeGLM26-30 0.153978 0.025703 5.991 2.09e-09 ***
DrivAgeGLM41-50 0.121999 0.018925 6.447 1.14e-10 ***
DrivAgeGLM51-70 -0.017036 0.018525 -0.920 0.357776
DrivAgeGLM71+ -0.047132 0.029964 -1.573 0.115726
VehBrandB2 0.007238 0.018084 0.400 0.688958
...
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GLM fitting and examples

...
VehBrandB3 0.085213 0.025049 3.402 0.000669 ***
VehBrandB4 0.034577 0.034523 1.002 0.316553
VehBrandB5 0.122826 0.028792 4.266 1.99e-05 ***
VehBrandB6 0.080310 0.032325 2.484 0.012976 *
VehBrandB10 0.067790 0.040607 1.669 0.095032 .
VehBrandB11 0.221375 0.043348 5.107 3.27e-07 ***
VehBrandB12 -0.152185 0.020866 -7.294 3.02e-13 ***
VehBrandB13 0.101940 0.047062 2.166 0.030306 *
VehBrandB14 -0.201833 0.093754 -2.153 0.031336 *
VehGasRegular -0.198766 0.013323 -14.920 < 2e-16 ***
DensityGLM 0.094453 0.014623 6.459 1.05e-10 ***
AreaGLM 0.028487 0.019909 1.431 0.152471
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
...
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GLM fitting and examples

...

Null deviance: 153852 on 610205 degrees of freedom
Residual deviance: 151375 on 610186 degrees of freedom
AIC: 197067

Number of Fisher Scoring iterations: 6
...

For better visibility and faster computation, we did not include all available
covariates. For benchmarking, later on an optimal GLM will be selected.
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GLM fitting and examples

Poisson deviance loss: in-sample and out-of-sample

For model fitting and model selection: study the in-sample and the
out-of-sample Poisson deviance losses on the learning sample
L = (Yi , X i , vi)n

i=1 and the test sample T = (Yt , X t , vt)m
t=1,

respectively.

The scaled in-sample Poisson deviance loss on L is given by

1∑n
i=1 vi

n∑
i=1

2vi

(
µ

ϑ̂MLE(X i) − Yi − Yi log
(

µ
ϑ̂MLE(X i)

Yi

))
.

The scaled out-of-sample Poisson deviance loss on T is given by

1∑m
t=1 vt

m∑
t=1

2vt

(
µ

ϑ̂MLE(X t) − Yt − Yt log
(

µ
ϑ̂MLE(X t)

Yt

))
.
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GLM fitting and examples

Poisson.Deviance <- function(pred, obs, weights){
100*2*(sum(pred)-sum(obs)+sum(log((obs/pred)ˆ(obs))))/sum(weights)}

#
learn$GLM <- fitted(d.glm)
test$GLM <- predict(d.glm, newdata=test, type="response")
#
# Poisson deviances are generally scaled with 100 for better visibility
round(c(Poisson.Deviance(learn$GLM, learn$ClaimNb, learn$Exposure),

Poisson.Deviance(test$GLM, test$ClaimNb, test$Exposure)), 3)↪→

[1] 46.954 47.179

round(100*d.glm$deviance/sum(learn$Exposure),3) # check with GLM output

[1] 46.954

These figures are in 10−2 units (throughout this lecture).

This GLM can be improved because we did not consider all covariates.
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GLM fitting and examples

Offsets vs. weights

The above code does not consider claims frequencies Yi = Ni/vi , but
rather claims counts Ni ∈ N0.

Thus, we have fitted a GLM to

E[Ni |X i ] = vi E[Yi |X i ] = vi exp ⟨ϑ, X i⟩ = exp (⟨ϑ, X i⟩ + log vi) .

This uses log vi as an offset (not involving a regression parameter) and
regresses

Ni ∼ X i + offset(log vi),

with weights equal to 1; see code above.

The EDF-GLM framework proposes to regress Yi ∼ X i with weights vi .

For the log-link Poisson regression the two approaches are equivalent.

We verify this by revisiting the above Poisson GLM example.
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GLM fitting and examples

# fitting claims frequencies Y=N/v with weights v
d.glm.weights <- glm(ClaimNb/Exposure ~ DrivAgeGLM + VehBrand + VehGas +

DensityGLM + AreaGLM, data=learn, weights=Exposure,
family=quasipoisson())

↪→

↪→

# for predicting the counts we need to rescale with the weights
learn$GLM.W <- fitted(d.glm.weights)*learn$Exposure
test$GLM.W <- predict(d.glm.weights, newdata=test,

type="response")*test$Exposure↪→

#
round(c(Poisson.Deviance(learn$GLM.W, learn$ClaimNb, learn$Exposure),

Poisson.Deviance(test$GLM.W, test$ClaimNb, test$Exposure)), 3)↪→

[1] 46.954 47.179

This in-sample and out-of-sample losses are identical to above.
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GLM fitting and examples

Takeaways and outlook

The GLM regression function is the base case that will be
extended to neural network regression functions.
GLM regression function:

X 7→ g(µϑ(X)) = ϑ0 +
q∑

j=1
ϑjXj = ⟨ϑ, X⟩ .

Neural network regression function:

X 7→ g(µϑ(X)) = w (d+1)
0 +

qd∑
j=1

w (d+1)
j z(d :1)

j (X)

=
〈
w (d+1), z(d :1)(X)

〉
,

with a deep neural network (feature extractor) z(d :1) : Rq → Rqd .

30/33



Copyright

Copyright

© The Authors

This notebook and these slides are part of the project “AI Tools for
Actuaries”. The lecture notes can be downloaded from:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

This material is provided to reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution and credit is given to the
original authors and source, and if you indicate if changes were made.
This aligns with the Creative Commons Attribution 4.0 International
License CC BY-NC.
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